

Une opportunité pour développer un système d'information énergie durable

14 octobre 2020

Know It! - Activité

- Accompagner des organisation dans le développement, le déploiement et la maintenance de systèmes d'informations souples et durables
 - Fournir méthode et outil de gestion du SI
 - Sur base de ces éléments, développer des solutions de gestion de données et de production d'information propres à chaque organisation et utilisant un formalisme commun
 - Intégrer ces solutions dans une organisation
 - Transférer les connaissances en vue d'assurer l'appropriation (compréhension) et la maîtrise des solutions proposées (formaction) : Coaching d'équipes internes aux organisations
 - Quelques mots :
 - Comprendre les besoins et parler la même langue
 - KIS
 - Big is not (always) beautiful

Know It! - Activité

- Travail de « dataculture »
 - Collecte des données
 - Stockage durable de celles-ci
 - Production d'information
 - Distribution de l'information
- Form'action des acteurs

Know It! - Référence

- SIE
 - EPS Coach et H2G (accord de branche 1 & 2)
 - Carmeuse (18 sites (Europe, Usa, Canada))
 - Solvay (63 sites depuis 2006 trimestriellement et/ou mensuellement)
 - Prayon (4 sites)
 - Fevia (données agrégées)
 - EuLa
 - BEP
- SI gestion
 - Bruxelles Environnement
 - Citydev
 - Ageas
 - BEP
 -

Système d'information

Une définition :

Un **système d'information** (SI) est un ensemble organisé de ressources (matériels, logiciels, personnel, données et procédures) qui permet :

- de récolter, regrouper, classifier, des données et
- de traiter et diffuser de l'information sur un phénomène donné.
 Le système d'information coordonne, grâce à l'information, les activités de l'organisation et lui permet ainsi d'atteindre ses objectifs.
- Valable quelle que soit la taille de l'organisation

Trois règles d'or

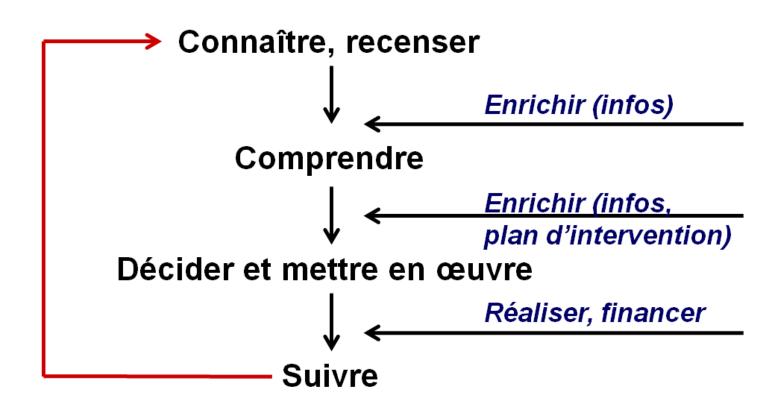
- PDD -> PDI
- PDR -> PDI
- Pas de ressource -> PDD

Qualités d'un SI

- S'inscrire dans le temps :
 - Transfert des connaissances
 - Structuration des informations
 - Passer de la photo au cinéma
- Entretenir des relations avec son environnement
 - En amont (interne à l'entreprise)
 - En aval (reporting interne et/ou externe)
- Adapté aux ressources disponibles
- Dynamique : intégrer des nouveaux besoins en information et donc en collecte de données
- Aider les acteurs à agir et les décideurs à décider

Objectifs d'un SIE

- Répondre à une question principale et à quatre sous-questions
 - Question : comment consommer moins / mieux
 - Énergie
 - CO₂ et autres gaz
 - €
 - Sous Questions
 - Quelles sont les améliorations à mettre en œuvre?
 - Par lesquelles débuter ?
 - Comment mesurer les effets de ces améliorations sur la consommation d'un site et la persistance de ces effets ?
 - Comment mener une politique de mise en œuvre des mesures d'amélioration ?
- Etablir un diagnostic de l'utilisation de l'énergie
 - Ce qui rentre (site par site)
 - Où et comment l'énergie est utilisée
- S'inscrire dans une optique multisite
- Consolidation
- « benchmarking »
- Aide à la définition d'une stratégie « carbone »
- Périmètre est le site


Objectifs d'un SIE - accords de branches 1

- Au niveau des entreprises
 - définir l'engagement en matière d'amélioration des efficiences (énergie et CO₂)
 - Fournir périodiquement les indices d'amélioration
- Au niveau des fédérations
 - Collecter les données périodiquement
 - Fournir des informations pluriannuelles
 - Consolider les données
- Au niveau de la Région
 - Consolider les données

Etapes de développement

Méthode utilisée: EPS

- Basée sur le suivi d'indices mesurant l'évolution de l'efficience énergie / CO₂
- Repose sur deux piliers
 - Un modèle de l'utilisation de l'énergie dans l'organisation (matrice ECA)
 - Vecteurs énergétiques (données de consommation)
 - Variables d'activité (données de production)
 - Une définition et évaluation du potentiel en économie de pistes d'améliorations permettant d'évaluer des objectifs d'amélioration

Le modèle : la matrice ECA

- Nécessité de construire un modèle des consommations basés sur :
 - La définition de variables d'activité explicatives (famille de produits)
 - L'évaluation des paramètres spécifiques (consommation, émission, coût) pour une année de référence
- Qualité du modèle repose sur :
 - La compétence de l'auditeur pour dégager les variables explicatives et les consommations associées
 - La qualité des données disponibles
- Solution durable qui permet de suivre :
 - un site sur plusieurs années
 - Plusieurs sites sur plusieurs années

Matrice ECA

	Année : 2004		Vecteurs achetés		Utilités		Produits				
			ELE	GZN	ACO	VAP					
		Réf. Compta	Electricité (en kWh)	Gaz Naturel (en GJ)	Air comprimé (en Nm3)	Vapeur 10 bars (en T)		Q. produite		kg CO)2/un
01	Production		TT	TT	TT	TT					
01.01	Stockage matières premières		TT	TT	TT	TT				\Box	
01.01.01	Stockage des Pommes de Terre		24.000	XX	XX	XX	P01.01	378.999 kg	Pommes de terre stockées		
01.01.02	Stockage de l'huile		23,700	XX	XX	XX	P01.02	125 Tonnes	Huile stockée		
01.02	Lavage		7.000	XX	XX	XX	P02.01	376.567 kg	Pommes de terre lavées		
01.03	Epluchage et tranchage		TT	TT	TT	TT					
01.03.01	Epluchage et tranchage chaîne 1		145,700	XX	44.678	9.900		120.000 kg	Pommes de terre épluchées et tranchées sur chaîne		
1.03.02	Epluchage et tranchage chaîne 2		220,000	XX	58,908	15.000	P03.02	220.000 kg	Pommes de terre épluchées et tranchées sur chaîne		
1.04	Cuisson		TT	TT	TT	TT					
01.04.01	Cuisson petites frites		XX	21.890	XX	XX		81.000 kg	Petites frites cuites	3,12	
01.04.02	Cuisson chips à l'ancienne		XX	23,896	XX	XX	P04.02	121.000 kg	Chips à l'ancienne		
01.04.03	Cuisson chips standard		XX	24.678	XX	XX		101.000 kg	Chips standard		
01.04.04	Cuisson chipitos		1.000	12.500	7.000	XX	Į P04.04	10.000 Tonnes	Chipitos		
01.05	Conditionnement		TT	TT	TT	TT	ľ				
01.05.01	Conditionnement petites frites		312.000	XX	24,567	XX		82.578 kg	Petites frites conditionnées		
01.05.02	Conditionnement chips à l'ancienne grands packets		306,789	XX	12.678	XX		82.000 kg	Chips à l'ancienne en grands paquets		
01.05.03	Conditionnement chips à l'ancienne petits paquets		150.000	XX	14.678	XX		54.000 kg	Chips à l'ancienne en petit paquet		
01.05.04	Conditionnement chips Standard grands paquets		178,900	XX	19.000	XX		35.000 kg	Chips standard en grand paquet		
01.05.05	Conditionnement chips standard en petits paquets		140.989	XX	18.789	XX	P05.05	73.457 kg	Chips standard en petit paquet		
02	Bâtiments		TT	TT	TT	TT					
02.01	Bâtiment production		TT	TT	TT	TT					
02.01.01	Chauffage bâtiment production		XX	3.897	XX	XX		1.200 m2	Surface chauffée production	\perp	
02.01.02	Eclairage bâtiment production		41.000	XX	XX	XX	Z02.02	1.200 m2	Surface éclairée production		
02.02	Båtiment administratif		TT	TT	TT	TT					
02.02.01	Chauffage bâtiment adminsitratif		XX	1.300	XX	XX		450 m2	Chauffage bâtiment administratif	$oxed{oxed}$	
02.02.02	Eclairage bâtiment administratif		37.678	XX	XX	XX		450 m2	Eclairage bâtiment administratif	$oxed{oxed}$	
02.02.03	Bureautique		68.789	XX	XX	XX	Z02.05	10 Sans	Bureautique	$oxed{oxed}$	
03	Utilités		TT	TT	TT	TT				\perp	
03.01	Production air comprimé		112.700	XX	XX	XX					
03.02	Production vapeur		43,458	23,759	13,450	XX					
	Totauz		1.813.703	111.920	213,748	24.900					

Suivi : option 1 – utilisation du modèle

Année de référence

Produit	CS (GJp/unité)	Quantité	Unité	GJp
Α	10,5	10.000	Т	105.000
В	17,8	3.546	Т	63.119
С	6,2	24.500	Т	151.900
		38.046		320.019

Année n consommation Théorique

Produit	CS (GJp/unité)	Quantité	Unité	GJp
Α	10,5	8.000	Т	84.000
В	17,8	13.890	Т	247.242
С	6,2	14.789	Т	91.692
		36.679		422.934

Année n consommation Réelle :

402.878

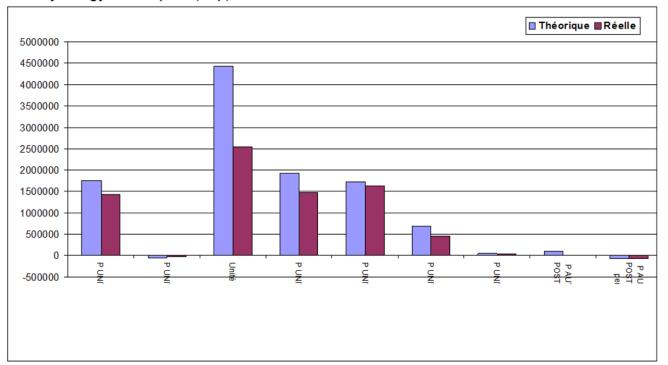
Indice d'efficience (Réel / théorique)

104,74 %

Suivi : option 1 – utilisation du modèle

Force :

- utilisation simple seules les états des variables d'activité doivent être connu
- Évolutif : nouvelle variable intégrée après calcul de ses consommation et émission spécifiques
- Faiblesse
 - Indice global
 - Pas de finesse
 - Par variable d'activité
 - Par vecteur


Suivi option 2 – ECA chaque période

Consump.(GJ 2008 VS 1999 unit) Comp. Quantity Unit

Primary energy consumption (GJp)

P. 3

Suivi : option 2 – utilisation du modèle

Force :

- Finesse dans les explications de la variation de l'indice
 - Poids des variables d'activité
 - Influence des mesures d'améliorations mise en œuvre (persistance)
- Évolutif : nouvelle variable intégrée dans la matrice ECA
- Consolidation des plusieurs sites
- Informations collatérales (utilisation des utilités,...)

Faiblesse

- Nécessité de récolter un grand nombre de données
- Ressources importantes

Réflexions sur les données

- Challenge: 63 sites tous les mois...
- La qualité de la donnée est essentielle
- « faire à manger avec ce que nous avons dans le frigo »
- Cadastre des données disponibles
 - Compteurs...
- ERP
 - Avantage : données vérifiées
 - Boucle de rétroaction (exemple Solvay)
 Amélioration du modèle
- Pour le tertiaire : relevé périodique et facture d'achat

Une opportunité?

- Interface entre plusieurs mondes
 - Production
 - Environnement
 - Chiffres économiques
 - Utilités (Vapeur)
- Collecte les données énergie / variable d'activité dans la durée
- Intégration des indices aux KPI de l'entreprise
- Consolidation au niveau d'un groupe de sites

Une opportunité

- Les données : une source pour d'autres informations
 - Budget (établissement et suivi)
 - Stratégie ETS
- Un système dynamique :
 - Autres GES
 - Prise en compte des matières premières
- Fédération des données énergie (GMAO simplifiée pour tertiaire)
- Estimation du coût d'une information marginale
 - Acquisition des données
 - Production d'information

Une opportunité

- Augmentation de la fréquence
 - De production des informations
 - De la collecte des données
- Nécessite une automatisation ...

Conditions

- Existence d'une volonté
 - d'améliorer l'efficience
 - D'affecter les ressources
 - D'implication de la part du management
- Existence d'une équipe en charge du SIE
- Possibilité de fixer un potentiel d'amélioration
- Possibilité de calculer les CS/ES de manière durable
 - Pour le suivi (impact des améliorations)
 - Pour la prévision des émissions
- Utilisation des systèmes d'information performants dans les entreprises

Conclusions: un SIE

- est une opportunité de fédérer les données et ressources liées à la gestion de l'énergie
- conserve l'histoire énergétique de l'organisation
- Est susceptible de développement et d'adaptation à de nouvelles problématique
- Repose sur une équipe et une méthodologie
 - Création et adaptation d'un modèle
 - Collecte des données
 - Production et distribution des informations

Merci pour votre attention

Jean Paul Bille

Associate

Know It!

Avenue Ducpétiaux 93

1060 Bruxelles

Jp.bille@knowit.be

www.knowit.be